2005 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

5. Consider the curve given by $y^2 = 2 + xy$.

(a) Show that
$$\frac{dy}{dx} = \frac{y}{2y - x}$$
.

(b) Find all points (x, y) on the curve where the line tangent to the curve has slope $\frac{1}{2}$.

(c) Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.

(d) Let x and y be functions of time t that are related by the equation $y^2 = 2 + xy$. At time t = 5, the value of y is 3 and $\frac{dy}{dt} = 6$. Find the value of $\frac{dx}{dt}$ at time t = 5.

6. Consider the differential equation $\frac{dy}{dx} = \frac{-xy^2}{2}$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(-1) = 2.

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)

(b) Write an equation for the line tangent to the graph of f at x = -1.

(c) Find the solution y = f(x) to the given differential equation with the initial condition f(-1) = 2.

WRITE ALL WORK IN THE TEST BOOKLET.

END OF EXAM

2004 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 5. Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)

- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane. Describe all points in the *xy*-plane for which the slopes are negative.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y 1$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.
- (d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.
- 6. Let f be a twice-differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).
 - (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.
 - (b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0.
 - (c) Show that if f''(x) = 0 for all x, then the graph of g does not have a point of inflection.
 - (d) Let h(x) = f(x) x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF EXAM

2004 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 6. Consider the differential equation $\frac{dy}{dx} = x^2 (y 1)$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the pink test booklet.)

- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane. Describe all points in the *xy*-plane for which the slopes are positive.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3.

END OF EXAMINATION

2011 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 5. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
 - (a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
 - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.
 - (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400.
- 6. Let f be a function defined by $f(x) = \begin{cases} 1 2\sin x & \text{for } x \le 0 \\ e^{-4x} & \text{for } x > 0. \end{cases}$
 - (a) Show that f is continuous at x = 0.
 - (b) For $x \neq 0$, express f'(x) as a piecewise-defined function. Find the value of x for which f'(x) = -3.
 - (c) Find the average value of f on the interval [-1, 1].

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF EXAM

© 2011 The College Board. Visit the College Board on the Web: www.collegeboard.org.

2008 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 6. Consider the logistic differential equation $\frac{dy}{dt} = \frac{y}{8}(6 y)$. Let y = f(t) be the particular solution to the differential equation with f(0) = 8.
 - (a) A slope field for this differential equation is given below. Sketch possible solution curves through the points (3, 2) and (0, 8).

(Note: Use the axes provided in the exam booklet.)

- (b) Use Euler's method, starting at t = 0 with two steps of equal size, to approximate f(1).
- (c) Write the second-degree Taylor polynomial for f about t = 0, and use it to approximate f(1).
- (d) What is the range of f for $t \ge 0$?

WRITE ALL WORK IN THE PINK EXAM BOOKLET.

END OF EXAM

© 2008 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).